Клуб любителей советских авто в Молдове
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
Меню сайта
Категории каталога
Очумелые ручки [14]
Статьи о том как и что делать!
Это надо знать [11]
Полезные и интересные статьи
Мини-чат
200
Наш опрос
Какой у Вас Автомобиль?
Всего ответов: 451
Главная » Статьи » Очумелые ручки [ Добавить статью ]

Изготовление аэрообвеса на автомобиль своими силами

Изготовление аэрообвеса на автомобиль своими силами

Компиляция статей и публикаций интернета

 

Вступление

 

Взяться за компиляцию материалов по данной тематике меня заставило личное желание самому освоить и применить на практике различные способы изготовления деталей внешнего тюнинга (аэрообвеса) автомобиля. Учитывая повышенный интерес к данной теме и других лиц «двинутых» на автотюнинге решил оформить все в виде текстового файла в котором будут собраны все найденные мною по искомой теме в дебрях интернета статьи и публикации. Во всех случаях авторство за данными публикациями сохранено и для каждой статьи указан источник откуда он взят. В случае обнаружения авторами данных публикаций каких-либо неточностей и погрешностей в указанных реквизитов статей, просьба не обижаться и учитывать что цель моей компиляции абсолютно не коммерческая.

Практически все статьи были взяты либо с сайтов по авиамоделированию либо с сайтов по судостроению и практические рекомендации по данным направлениям, ввиду схожести технологий и искомых результатов, могут быть полностью учтены при изготовлении деталей аэрообвеса автомобилей.

Для полноты охвата всей темы и дабы не упустить что-то важное приводятся все публикации начиная от классификации конструкционных материалов до изготовления изделий из них и заканчивая окраской.

Если у кого-то возникнут предложения, комментарии либо кто-то пожелает поделиться опытом по данной теме, просьба писать на адрес : messadot@mail.ru

 

Messadot

 

Конструкционные материалы применяемые при изготовлении деталей из стеклопластика

 

Синтетические смолы

 

Классификация синтетических смол

 (Материал фирмы MAS Epoxy)

(ист - http://www.t22.nm.ru    Автор перевода - Сергей Баркалов)

    Эти смолы применяются в судостроительной промышленности для пропитки волокон в процессе изготовления изделий из волоконно-армированного пластика. Независимо от природы волокна (стекловолокно , углеволокно , кевлар , древесное волокно) , адгезия смолы и пропитываемость волокон являются самым важным моментом для производства качественного изделия.

ЭПОКСИДНЫЕ СМОЛЫ. Представляют самое универсальное семейство смол , применяемых для производства композитных конструкций и судоремонта. Практически по всем параметрам эти смолы обеспечивают самые высокие показатели клеевого шва и прочности . В настоящее время разработаны смолы , не содержащие вредных для здоровья веществ и не выделяющие при отверждении фенола . Смолы обладают крайне малой усадкой . В случае ремонта компонента , изначально изготовленного на основе полиэфирных и винилэфирных смол и подвергнутого деформации и трещинам , хорошо армированная эпоксидная смола имеет прочность связи с основой 2000 пси (у винилэфирной 500 пси) . Не имеет значения , из какого сочетания древесины , углеволокна , кевлара , стекловолокна и заполнителя состоит ремонтируемое изделие , смола хорошо впитается и навсегда образует с ним композитное единое целое. Когда эпоксидная смола используется в качестве химически стойкого барьерного слоя , покрытие ею обладает очень низким водопоглощением ( менее 0.5%) и можно быть уверенным в том , что отделочные покрытия будут иметь хорошее сцепление с эпоксидной основой , а основа – с корпусом судна . Современные эпоксидные смолы могут обладать низкой вязкостью и контролируемым временем отверждения.

ВИНИЛЭФИРНЫЕ СМОЛЫ. Отражают шаг в верном направлении развития смол. Хотя и имеют тот же пероксидный механизм образования пространственных связей , что и полиэфирная смола. Дополнительную прочность этим гибридным смолам придают эпоксидные молекулы , заложенные в их основу . Усадка при отверждении умеренная. Повышенная прочность модифицированной смолы предотвращает образование микротрещин , а сама основа смолы к тому же служит повышению адгезии к поверхности. Обладают неплохими водостойкими качествами и некоторые имеющиеся в продаже барьерные покрытия изготовлены на основе смол этого семейства. К отрицательным сторонам винилэфирных смол относятся критичность к их приготовлению , высокий уровень содержания вредных веществ (в форме стирола) , чувствительность к влажности и температуре (может не полимеризоваться) . Хорошая винилэфирная смола весьма дорогая по сравнению с полиэфирной , и по цене близка к эпоксидной. Винилэфирные смолы несомненно превосходят по характеристикам полиэфирные при рассмотрении стандартного пероксидного процесса , однако их адгезия к разнородным и ранее отвержденным поверхностям все еще остается крайне низкой и многие корпуса на базе винилэфирной смолы страдают все той же проблемой массового отслоения наружного слоя стеклопластика от заполнителя и переборок. Плюс ко всему практически всегда барьерные покрытия наносятся уже после продажи судна и здесь очень важно , чтобы это покрытие имело прочную связь с основой. Винилэфирные смолы обладают хорошей адгезией к стекловолокну и низкой адгезией к более экзотическим материалам (кевлар , углеволокно) и древесине. Для отверждения полиэфирных и винилэфирных смол на открытой поверхности требуется введение специальных добавок. Нанесение последующих слоев нуждается в тщательной подготовке поверхности для обеспечения адгезии.

ПОЛИЭФИРНЫЕ СМОЛЫ. Самые дешевые из всех смол , применяемых в стеклопластиковом судостроении с использованием отрицательной формы в виде матрицы. Главное преимущество полиэфирных смол по сравнению с винилэфирными и эпоксидными – их крайняя дешевизна. Отрицательными сторонами являются плохая адгезия , высокий уровень фильтрации воды , сильная усадка и высокое содержание вредных веществ. Могут применяться только со стекловолокном. Лучше всего подходят для изготовления конструкций , не критичных к весу , адгезии и прочности на излом. Примером может служить изготовление простого цельного стеклопластикового элемента в открытой матрице за одну операцию и без образования вторичных соединений на этой смоле. Если точность формы не очень важна , водостойкость не имеет значения и место работы имеет хорошую вентиляцию , тогда полиэфирная смола будет главным кандидатом. Полиэфирные смолы с давних времен обладают плохими характеристиками в области адгезии и растяжения , в результате чего готовое изделие склонно к образованию микротрещин и формированию слабого вторичного клеевого соединения . Эти характеристики приобретают значение , когда заходит речь о соединении разнородных материалов в одном изделии или когда материалы не имеют обычной стекловолокнистой основы. Готовый корпус на основе полиэфирной смолы страдает осмотическим пузырением , если его не обработать эпоксидной смолой для образования барьерного покрытия. Верфи завалены корпусами и надстройками , пораженными огромными участками расслоения стеклопластика и отделения его от заполнителя. Все это стало результатом повсеместного в промышленности нарушения технологии склеивания (использования полиэфирной смолы в качестве клея).

 

ХИМИЯ ЭПОКСИДНЫХ СМОЛ
(из руководства
EPOXY
BOOK фирмы System Three)

(ист - http://www.t22.nm.ru    Автор перевода и комментариев - Сергей Баркалов)

    Для того , чтобы построить лодку , вовсе ни к чему детальное вникание в химию смол , но знание основ их химии поможет в успешном завершении проекта и позволит избежать ошибок и разных сюрпризов , которые могут возникнуть при работе со смолой.

    Смола , лежащая в основе всех эпоксидных клеев , применяемых в судостроении , называется диглицидиловый эфир бисфенола А . Бисфенол А получают путем взаимодействия фенола с ацетоном при определенных условиях . Буква А обозначает ацетон , "фенол" обозначает фенольные группы , а "бис" обозначает двойку. Таким образом бисфенол А является химическим продуктом , представляющим собой комбинацию двух молекул фенола с одной ацетона . Затем бисфенол А вступает в реакцию с веществом под названием эпихлоргидрин . В результате реакции по обеим сторонам молекулы бисфенола А прикрепляются две ("ди-") глицидоловые группы . Получившееся вещество называется диглицидиловый эфир бисфенола А , или же основная эпоксидная смола . Именно глицидиловые группы взаимодействуют с атомами водорода аминов в отвердителе , в результате чего и получается отвержденная эпоксидная смола.

    Основная эпоксидная смола обладает высокой вязкостью и малопригодна для судостроительных целей , разве что в качестве клея в некоторых ситуациях . Производители эпоксидных составов приобретают смолу именно в такой форме и затем добавляют к ней определенные компоненты (модифицируют) для придания необходимых свойств .

    Отвердители , применяемые с эпоксидной смолой при комнатной температуре , в большинстве своем полиамины . То есть органические молекулы , содержащие две и более аминогруппы . Аминогруппы по структуре напоминают аммиак , только присоединены к органическим молекулам . И как и аммиак , амины являются сильными щелочами . Из-за этого сходства отвердители эпоксидных смол зачастую обладают аммиачным запахом , который наиболее ощутим в замкнутом объеме сосуда хранения сразу после его открывания . На воздухе же этот запах мало ощутим из-за высокого давления паров полиаминов.

    Вступающие в реакцию аминогруппы представляют собой атомы азота с присоединенными к ним одним-двумя атомами водорода . Эти атомы водорода взаимодействуют с атомами кислорода из глицидиловых групп эпоксидной смолы и получается отвержденная смола - термореактивная пластмасса с большим количеством пространственных связей . При нагревании она размягчается , но не плавится . Трехмерная структура обеспечивает ей отличные физические свойства .

    Соотношение атомов кислорода глицидола и атомов водорода аминов с учетом различных молекулярных масс и плотностей и определяет в конечном счете соотношение смолы и отвердителя . Изменение указанного соотношения приведет к тому , что останутся вакантные атомы кислорода или водорода в зависимости от отклонения в ту или другую сторону . В итоге отвержденная смола будет обладать меньшей прочностью из-за неполного образования пространственных связей.

    Отвердители эпоксидных смол не являются катализаторами . Катализаторы способствуют реакции , но химически не являются частью конечного продукта . Отвердители же эпоксидных смол образуют пары с молекулами смолы , что сказывается на конечных свойствах отвержденного продукта .

    Время отверждения эпоксидной смолы зависит от реакционной активности атомов водорода аминов . И хотя присоединенная органическая молекула не принимает непосредственного участия в химической реакции , она влияет на то , как скоро атомы водорода аминов покидают азот и взаимодействуют с атомами кислорода глицидола. Таким образом , время отверждения определяется кинетикой данного амина , используемого в качестве отвердителя. Это время можно изменить , применив другой отвердитель , добавив в смолу акселератор или изменив температуру или массу смеси смолы с отвердителем .

    Реакция отверждения ЭС - экзотермическая .Это означает , что при ее отверждении выделяется тепло . Скорость , с которой смола отверждается , зависит от температуры смеси . Чем выше температура , тем быстрее реакция. Скорость ее удваивается при повышении температуры на 10° С и наоборот . К примеру , если при 20° С смола становится свободной на отлип за 3 часа , то при 30°С на это потребуется 1,5 часа и 6 часов при 10°С . Все возможности повлиять на скорость отверджения сводятся к этому основному правилу . Время жизнеспособности смеси и время работы с ней в основном определяются изначальной температурой смеси смолы с отвердителем .

    Временем желатинизации (гелеобразования) называется время , необходимое для данной массы , находящейся в компактном объеме для ее обращения в твердое состояние . Это время зависит от первоначальной температуры смеси и следует вышеописанному правилу. К примеру , если 100 г смеси смолы с отвердителем обращаются в твердое состояние за 15 минут при исходной температуре в 25°С , то при исходной температуре в 15°С на это потребуется около получаса . Если при тех же 25°С эти 100 г равномерно размазать по площади в 1 м2 , полимеризация займет свыше двух часов . Время полимеризации помимо температуры зависит и от отношения площади к массе смолы .

    Суть происходящего заключается в следующем . В ходе реакции выделяется тепло . Если выделяемое тепло сразу поглощается окружающей средой (как это происходит со смолой в виде тонкой пленки) , температура полимеризующейся смолы не возрастает и скорость реакции остается неизменной . Если же смола занимает компактный объем (как в случае банки) , экзотермическая реакция повышает температуру клеевой смеси и реакция ускоряется.

    Время работы со смолой составляет примерно 75% от времени желатинизации из-за геометрической формы емкости . Его можно увеличить путем увеличения площади поверхности , уменьшения массы смеси или охлаждением смолы и отвердителя перед смешиванием. Вязкость смеси в емкости будет расти (к примеру , при 25°С) в абсолютных единицах в силу полимеризации , но из-за разогрева смеси будет казаться , что вязкость уменьшается. Клей на стадии 75% времени желатинизации будет казаться очень жидким (из-за высокой температуры) , но если при этом его охладить до комнатной температуры , он окажется очень густым . Густая же смола на стадии частичной полимеризации не так хорошо пропитывает стеклоткань и ложится на склеиваемые поверхности . Опытные специалисты либо готовят смесь , которая сразу наносится , либо для замедления реакции увеличивают площадь поверхности .

    И хотя скорость полимеризации смолы и зависит от температуры , сам механизм от нее не зависит . Быстрее всего реакция протекает в жидком состоянии смолы. По ходу полимеризации смола меняет состояние с жидкого на липкое вязкое гелеобразное . После гелеобразования скорость реакции замедляется по мере нарастания твердости. В твердых телах химические реакции протекают медленнее. От состояния мягкого липкого геля смола переходит к более твердому , постепенно теряя липучесть. Со временем липучесть исчезнет и смола продолжит набирать твердость и прочность .

    При нормальной температуре смола достигает от 60 до 80% окончательной прочности спустя 24 часа. Дальнейшее отверждение будет продолжаться в течение последующих нескольких недель , достигнув в конце концов точки , когда дальнейшее отверждение будет невозможно без значительного роста температуры. Однако для судостроительных целей можно считать , что смолы , полимеризующиеся при комнатной температуре , окончательно отверждаются спустя 72 часа при 20°С.

    Как правило , лучше работать с возможно малым временем полимеризации , насколько это позволяет конкретная ситуация . Это дает возможность переходить к следующему этапу , не тратя времени на ожидание отверждения клея. Клеевая пленка с малым временем полимеризации меньшее время остается липкой и успеет подцепить меньше следов на ней насекомых , их самих и прочего летучего мусора .

    Эпоксидные смолы могут в процессе отверждения образовывать на своей поверхности тонкую пленку. Она формируется в присутствии углекислого газа и паров воды , особенно в холодную сырую погоду , нежели в теплую и солнечную .Эта пленка водорастворима и должна быть удалена перед шлифовкой или покраской.


 


Категория: Очумелые ручки | Добавил: sovcar (10.02.2009) | Автор: Дмитрий
Просмотров: 1392 | Рейтинг: 0.0/0 |
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Поиск
Друзья сайта
Статистика

Онлайн всего: 1
Гостей: 1
Пользователей: 0
Copyright MyCorp © 2024